top of page
diphtheria-photo-phil-22877.jpg

REFERENCES

TEXT REFERENCES:

  1. Brock T., Madigan M. (2012).  Biology of microorganisms. 13th ed. San Francisco: Pearson Benjamin Cummings. Chapter 18, page 526

  2. Zhou X., Rodriguez-Rivera F. P., Lim H. C., Bell J. C., Bernhardt T. G., Bertozzi C. R., Theriot J. A. (2019). Sequential assembly of the septal cell envelope prior to V snapping in Corynebacterium glutamicum. Nature chemical biology, 15(3), 221–231. https://doi.org/10.1038/s41589-018-0206-1 

  3. SantaCruz-Calvo L., Gonzalez-Lopez J., Manzaner M. (2013). Arthrobacter siccitolerans sp. nov., a highly desiccation-tolerant, xeroprotectant-producing strain isolated from dry soil. International Journal Of Systematic and Evolutionary Microbiology, 63(11): 4174–4180. doi: 10.1099/ijs.0.052902-0

  4. Costa J. J, Michel J. L, Rappuoli R, Murphy J. R. (1981). Restriction map of corynebacteriophages beta c and beta vir and physical localization of the diphtheria tox operon. Journal of  Bacteriology. Oct;148(1):124-30. doi: 10.1128/JB.148.1.124-130.1981. PMID: 6270058; PMCID: PMC216174.  

  5. Lagrou K, et al. (1998). "Prospective Study of Catalase-positive Coryneform Organisms in Clinical Specimens: Identification, Clinical Relevance, and Antibiotic Susceptibility." Diagnostic Microbiology and Infectious Disease, vol. 30, no. 1, pp. 7-15.  

  6. Abe, S., Takayama, K., Kinoshita, S. (1967). "Taxonomical studies on glutamic acid-producing bacteria." J. Gen. Appl. Microbiol. 13:279-301.  

  7. Brock T., Madigan M. (2012) Biology of microorganisms. 13th ed. San Francisco: Pearson Benjamin Cummings. Chapter 18, page 527

  8. Dworkin M. (2006) The Prokaryotes. New York, NY: Springer. 

  9. SMI ID 2: identification of Corynebacterium species. (2020). Retrieved 17 November 2020, from https://www.gov.uk/government/publications/smi-id-2-identification-of-corynebacterium-species

  10. Bernard K., Funke G. (2015). Corynebacterium. Bergey's Manual Of Systematics Of Archaea And Bacteria, 1-70. doi: 10.1002/9781118960608.gbm00026 

  11. Pallerla S., Knebel S., Polen T., Klauth P., Hollender J., Wendisch V., Schoberth S. (2005). Formation of volutin granules in Corynebacterium glutamicum. FEMS Microbiology Letters, 243(1), 133-140. doi: 10.1016/j.femsle.2004.11.047 

  12. Gross D., Vidaver A. (1979). Bacteriocins of phytopathogenic Corynebacterium species. Canadian Journal Of Microbiology, 25(3), 367-374. doi: 10.1139/m79-057 

  13. McGowan L., Herbert R., Muyzer G. (2004). A comparative study of hydrocarbon degradation by Marinobacter sp.,Rhodococcus sp. and Corynebacterium sp. isolated from different mat systems. Ophelia, 58(3), 271-281. doi: 10.1080/00785236.2004.10410235 

  14. Zhang H., Tang J., Wang L., Liu J., Gurav R., Sun K. (2016). A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar. Journal Of Environmental Sciences, 47, 7-13. doi: 10.1016/j.jes.2015.12.023 

  15. Aryal S. (2020). Habitat and Morphology of Corynebacterium diphtheriae. Retrieved 17 November 2020, from https://microbenotes.com/habitat-and-morphology-of-corynebacterium-diphtheriae/ 

  16. Collier R. J. (1975). Diphtheria Toxin: Mode of Action and Structure. Bacteriological Reviews, 39(1), 54-85.
     

  17. Murphy J. R. (2011). Mechanism of Diphtheria Toxin Catalytic Domain Delivery to the Eukaryotic Cell Cytosol and the Cellular Factors that Directly Participate in the Process. Toxins (Basel), 3(3), 294–308. doi: 10.3390/toxins3030294

  18. Tao X., Schiering N., Zeng H., Ringe D., Murphy J. R. (1994). Iron, DtxR, and the regulation of diphtheria toxin expression. Molecular Microbiology, 14(2), 191-197. https://doi-org.ezproxy.nottingham.ac.uk/10.1111/j.1365-2958.1994.tb01280.x

  19. Gobbetti M., Rizzello C. G. (2014).  Encyclopedia of Food Microbiology. 2nd ed. Italy: Academic Press. p69-76.  

  20. Husserl J., Spain J. C., Hughes J. B. (2010). Growth of Arthrobacter sp. strain JBH1 on nitroglycerin as the sole source of carbon and nitrogen. Applied and environmental microbiology, 76(5), 1689–1691. https://doi.org/10.1128/AEM.02400-09 

  21. Nordin K. (2004). 4-chlorophenol biodegradation by Arthrobacter chlorophenolicus A6 (PhD dissertation). Institutionen för biokemi och biofysik, Stockholm. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-159 

  22. Vikram Surendra & Kumar, Shailesh & Vaidya, Bhumika & Pinnaka, Anil Kumar & Raghava, Gajendra. (2013). Draft Genome Sequence of the 2-Chloro-4-Nitrophenol-Degrading Bacterium Arthrobacter sp. Strain SJCon. Genome announcements. 1. e0005813. Doi: 10.1128/genomeA.00058-13. 

  23. Eschbach M., Möbitz H., Rompf A., Jahn D. (2003). Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. FEMS microbiology letters, 223(2), 227–230. https://doi.org/10.1016/S0378-1097(03)00383-5

  24. Balk M., Laverman A. M., Keuskamp J. A., Laanbroek H. J. (2015). Nitrate ammonification in mangrove soils: a hidden source of nitrite?. Frontiers in microbiology, 6, 166. https://doi.org/10.3389/fmicb.2015.00166 

  25. Mohn W., Master E. (1998). Psychrotolerant Bacteria Isolated from Arctic Soil That Degrade Polychlorinated Biphenyls at Low Temperatures. Applied and Environmental Microbiology, 64 (12) 4823-4829. doi: 10.1128/AEM.64.12.4823-4829.199

  26. Dsouza M., Taylor M. W., Turner S. J., Aislabie J. (2015). Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC genomics, 16(1), 36. https://doi.org/10.1186/s12864-015-1220-2

  27. Burgess R. (2001). Encyclopedia of Genetics. 1st ed: Elsevier Science Inc.

  28. Busse H. J., Wieser M., Buczolits S. (2015).  Arthrobacter. In Bergey's Manual of Systematics of Archaea and Bacteria (eds M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B). Whitman). https://doi.org/10.1002/9781118960608.gbm00118 

  29. Jones D., Keddie R.M. (2006). The Genus Arthrobacter. The Prokaryotes. Springer, New York. https://doi.org/10.1007/0-387-30743-5_36

  30. Luscombee B. M., Gray R. G. (1971). Effect of varying growth rate on the Morphology of Arthrobacter. Journal of General Microbiology, 69, 433-434. https://doi.org/10.1099/00221287-69-3-433 

  31. Moiroud A., Gounot A. M. (1969). Sur une bactérie psychrophile obligatoire isolée de limons glaciaires [An obligatory psychrophile bacteria isolated from glacial mud]. Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles, 269(21), 2150–2152.

  32. Mongodin E. F., Shapir N., Daugherty S. C., DeBoy R. T., Emerson J. B., Shvartzbeyn A., Radune D., Vamathevan J., Riggs F., Grinberg V., Khouri H., Wackett L. P., Nelson K. E., Sadowsky M. J. (2006). Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS genetics, 2(12), 214. https://doi.org/10.1371/journal.pgen.0020214

  33. Ehrlich H. L. (1963). Bacteriology of Manganese Nodules: I. Bacterial Action on Manganese in Nodule Enrichments. Applied microbiology, 11(1), 15–19. 

  34. Jensen H. L. (1953). Cited from S. A. Waksman .(1957). Family II: Actinomycetaceae Buchanan, 1918. In: R. S. Breed, E. G. D.Murray, and N. R. Smith (Eds.) Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins. Baltimore, MD. 7:713 

  35. Ali H., Hemeda N. F., Abdelaliem Y. F. (2019). Symbiotic cellulolytic bacteria from the gut of the subterranean termite Psammotermes hypostoma Desneux and their role in cellulose digestion. AMB Express, 9(1), 111. https://doi.org/10.1186/s13568-019-0830-5 

  36. Bergey D.H., Harrison F. C., Breed R. S. , Hammer B. W. Huntoon F. M. (1923). In: Bergey’s Manual of Determinative Bacteriology 1st (Eds. The Williams and Wilkins Co. Baltimore). 

  37. NCBI taxonomy database for Cellulomonas classification. (2020). NCBI Taxonomy Browser. Retrieved from: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=1707&lvl=3&keep=1&srchmode=1&unlock 

  38. Stackebrandt E., Kandler O. (1979). “Taxonomy of the Genus Cellulomonas, Based on Phenotypic Characters and Deoxyribonucleic Acid-Deoxyribonucleic Acid Homology, and Proposal of Seven Neotype Strains.” International Journal of Systematic and Evolutionary Microbiology. 29 : 273-282. 

  39. Stackebrandt E, Schumann P, Prauser H. (2006). The family cellulomonadaceae. In: Dworkin M, Stanley F, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The prokaryotes. Archaea, bacteria: firmicutes, actinomycetes. NewYork: Springer; . pp. 983–1001 

  40. Zhang L., Xi L., Qiu D., Song L., Dai X., Ruan J., Huang Y. (2013). Cellulomonas marina sp. nov., isolated from deep-sea water. International journal of systematic and evolutionary microbiology, 63( 8), 3014–3018. https://doi.org/10.1099/ijs.0.048876-0 

  41. Chaudhary P., Kumar N. N., Deobagkar D. N. (1997). The glucanases of Cellulomonas. Biotechnology advances, 15(2), 315–331. https://doi.org/10.1016/s0734-9750(97)00010-4

  42. MacLeod A. M., Lindhorst T., Withers S. G., Warren R. A. (1994). The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: evidence from detailed kinetic studies of mutants. Biochemistry, 33(20), 6371–6376. https://doi.org/10.1021/bi00186a042

  43. Lakhundi S., Siddiqui R., Khan N. A. (2015). Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasites Vectors 8, 23 . https://doi.org/10.1186/s13071-015-0642-7

  44.  Stackebrandt E., Schumann P. (2015 ). Cellulomonas. Published in Bergey's Manual of Systematics of Archaea and Bacteria. doi: 10.1002/9781118960608.gbm00063 

  45. Clark F. E., Carr P. H. (1951). Motility and flagellation of the soil corynebacteria. Journal of bacteriology, 62(1), 1–6. https://doi.org/10.1128/JB.62.1.1-6.1951

  46. Pourcher A. M., Sutra L., Hébé I., Moguedet G., Bollet C., Simoneau P., Gardan L. (2001). Enumeration and characterization of cellulolytic bacteria from refuse of a landfill , FEMS Microbiology Ecology, Volume 34, Issue 3, Pages 229–241, https://doi.org/10.1111/j.1574-6941.2001.tb00774.x 

  47. Tomme P., Kwan E., Gilkes N. R., Kilburn D. G., Warren R. A. (1996). Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. Journal of bacteriology, 178(14), 4216–4223. https://doi.org/10.1128/jb.178.14.4216-4223.1996

Lynd L. R., Weimer P. J., van Zyl W. H., Pretorius I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews : MMBR, 66(3), 506–577. https://doi.org/10.1128/mmbr.66.3.506-577.2002

Text References
Image References

IMAGE REFERENCES:

  • Fig 1: Birte Abt, Brian Foster, Alla Lapidus, Hans-Peter Klenk. 2010, pg 15-25 

  • Fig 2: Dubinina. Zhadanov. 1975. Arthtobacter crystallopoietes. New Mexico State University. 

  • Fig 3: Sahreena Lakhundi, Ruqaiyyah Siddiqui and Naveed Ahmed Khan. 2015 8:23 

  • Fig 4: Purohit.M 2018. Diphtheria. DoveMed 

  • Fig 5: Jamal, S. Tiwari, S. Silva, A. Azevedo, V. 2017. Pathogenesis of Corynebacterium Diphtheriae and available vaccines: An Overview. Global Journal of Infectious Diseases and Clinical Research  

  • Fig 6: Jones D, Keedie R.M. 2017. The Prokaryotes, pp 950-960

  • Fig 7: Healthy Soils, Healthy Waters. Jersey-Friendly Yard 

  • Fig 8: Michel C, 2013. Study: Antarctic Ice Sheets May Melt Even Faster than Previously Predicted. Common Dreams.

  • Fig 9: Serra A, Artal R, Pozo M, Garcia-Amoros J, Gomez E. 2020. Simple Environmentally-Friendly Reduction of 4-Nitrophenol. MDPI.

  • Fig 10: 2020. Arthrobacter. Wikipedia. 

  • Fig 11: Nabal Díaz S, García-Lechuz Moya J.M. 2019. Arthrobacter creatinolyticus: An emerging human pathogen causing urinary tract infection. ELSEVIER

  • Fig 12: 2015. Corynebacterium. Microbe Wiki. 

  • Fig 13: 2011. Corynebacterium pseudotuberculosis. University of Copenhagen: Department of Veterinary Disease

  • Fig 14: Cellulomonas. MRGI (Microbiomology)

  • Fig 15: Sahreena Lakhundi, Ruqaiyyah Siddiqui and Naveed Ahmed Khan. 2015 8:23

  • Fig 16: Batra S. 2017. ALBERT STAINING – PRINCIPLE, REQUIREMENTS, PROCEDURE & RESULT INTERPRETATION. Paramedics World. 

  • Fig 17: Gross D.C, Vidaver A.K. 1978. Bacteriocins of phytopathogenic Corynebacterium species. Research Gate

  • Fig 18: 2020. Hexadecane 3D ball. Wikimedia Commons

  • Fig 19: Cow eating grass. A Well Fed World https://awellfedworld.org/issues/climate-issues/grass-fed-beef/

  • Fig 20: Termites.  Blue Sky Pest Control https://www.blueskypest.com/termite-control/

  • Fig 21: Splenger T. 2019. Iris Root Rot: Preventing Rotting Iris Roots And Bulbs. Gardening Know How.

  • Fig 22: 2016. British Indian Ocean Territory – underwater. Youtube

  • Fig 23: Lakhundi, S., Siddiqui, R. & Khan, N.A. Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasites Vectors 8, 23 (2015). https://doi.org/10.1186/s13071-015-0642-7

  • Fig 24: Tamura T., Nishii. T, Hatano K. 2006. Arthrobacter. Microbe Wiki

  • Fig 25: Towle K. M., Vederas J. C. 2017. Structural features of many circular and leaderless bacteriocins are similar to those in saposins and saposin-like peptides. Royal society of chemistry. 276-285. DOI: 10.1039/C6MD00607H

  • Fig 26: Serrà A., Artal R., Pozo M., Garcia-Amorós J., Gómez E.  2020. Simple Environmentally-Friendly Reduction of 4-Nitrophenol. Catalysts. 10(4), 458. https://doi.org/10.3390/catal10040458

  • Fig 27: Rutkiewicz, M., Bujacz, A., Bujacz, G. 6H1P Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB - data collected at room temperature. 2019. DOI: 10.2210/pdb6H1P/pdb

  • Fig 28: Pasieka A. TEM of Corynebacterium bacteria. Science Photo Library

Video References

VIDEO REFERENCES

unnamed1.png

By Cyrus Larkin, Daniella Hogg, Hoang An Nguyen, Malithi Fernando, Maisie Nurse, Oscar Davies

​

©2020 by Coryneform Bacteria. Proudly created with Wix.com

bottom of page